Local-global principles for zero-cycles on homogeneous spaces over arithmetic function fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-cycles on varieties over finite fields

For any field k, Milnor [Mi] defined a sequence of groups K 0 (k), K M 1 (k), K M 2 (k), . . . which later came to be known as Milnor K-groups. These were studied extensively by Bass and Tate [BT], Suslin [Su], Kato [Ka1], [Ka2] and others. In [Som], Somekawa investigates a generalization of this definition proposed by Kato: given semi-abelian varieties G1, . . . , Gs over a field k, there is a...

متن کامل

Arithmetic over Function Fields

These notes accompany lectures presented at the Clay Mathematics Institute 2006 Summer School on Arithmetic Geometry. The lectures summarize some recent progress on existence of rational points of projective varieties defined over a function field over an algebraically closed field.

متن کامل

Finiteness properties of soluble arithmetic groups over global function fields

Let G be a Chevalley group scheme and B ≤ G a Borel subgroup scheme, both defined over Z. Let K be a global function field, S be a finite non-empty set of places over K , and OS be the corresponding S–arithmetic ring. Then, the S– arithmetic group B(OS) is of type F |S|−1 but not of type FP |S| . Moreover one can derive lower and upper bounds for the geometric invariants Σ(B(OS)). These are sha...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

FINITENESS THEOREM ON ZERO-CYCLES OVER p-ADIC FIELDS

Contents Introduction 2 1. Homology theory and cycle map 6 2. Kato homology 11 3. Vanishing theorem 15 4. Bertini theorem over a discrete valuation ring 19 5. Surjectivity of cycle map 22 6. Blowup formula 24 7. A moving lemma 26 8. Proof of main theorem 28 9. Applications of main theorem 31 Appendix A. Resolution of singularities for embedded curves 34 References 39

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2019

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7911